
Linear Algebra II

08/04/2013, Monday, 9:00-12:00

 Inner product spaces and Gram-Schmidt process 3 + 6 + (6 + 3) = 18 pts

(a) Let v1, v2, and v3 be nonzero vectors of an inner product space V . Show that v1, v2, and v3
are linearly independent if {v1, v2, v3} is an orthogonal set of vectors.

(b) Consider the vector space P4. Let

〈p, q〉 = p0q0 + p1q1 + p2q2 + p3q3

where p(x) = p0 + p1x+ p2x
2 + p3x

3 and q(x) = q0 + q1x+ q2x
2 + q3x

3. Show that 〈·, ·〉 is
an inner product on P4.

(c) Consider the vector space P4. Let S be the subspace spanned by the vectors 1, 1 + x, and
(1 + x)2.

(i) By applying the Gram-Schmidt process, find an orthonormal basis for the subspace S.

(ii) Find the vector p in S that is closest to the vector (1 + x)3.

Required Knowledge: inner product, Gram-Schmidt process, least-squares ap-
proximation

Solution:

(1a):

Since {v1, v2, v3} is an orthogonal set of vectors, we know that

〈vi, vj〉 = 0 (1)

whenever i 6= j. Also, we know that

‖vi‖2 = 〈vi, vi〉 6= 0 (2)

since vi is nonzero. Let c1, c2, and c3 be scalars such that

c1v1 + c2v2 + c3v3 = 0.

Then, it follows from (1) that

0 = 〈vi, c1v1 + c2v2 + c3v3〉 = ci〈vi, vi〉 = ci‖vi‖2

for all i ∈ {1, 2, 3}. In view of (2), we get ci = 0 for all i ∈ {1, 2, 3}. Therefore, the vectors v1, v2,
and v3 are linearly independent.

(1b):

An inner product on P4 satisfies the following properties:

i. 〈p, p〉 > 0 and 〈p, p〉 = 0 if and only if p = 0

ii. 〈p, q〉 = 〈q, p〉

iii. 〈p, αq + βr〉 = α〈p, q〉+ β〈p, r〉



for all p, q, r ∈ P4 and α, β ∈ R.
Note that 〈p, p〉 = p20 + p21 + p22 + p23 > 0 for p(x) = p0 + p1x + p2x

2 + p3x
3. Moreover,

p20 + p21 + p22 + p23 = 0 if and only if p0 = p1 = p2 = p3 = 0, i.e. p(x) = 0. Therefore, the first
condition is met.

To prove the second condition is satisfied, let p(x) = p0 + p1x + p2x
2 + p3x

3 and q(x) =
q0 + q1x+ q2x

2 + q3x
3. Note that

〈p, q〉 = p0q0 + p1q1 + p2q2 + p3q3

= q0p0 + q1p1 + q2p2 + q3p3

= 〈q, p〉.

This means that the second condition is satisfied too.
Finally, let p(x) = p0 + p1x + p2x

2 + p3x
3, q(x) = q0 + q1x + q2x

2 + q3x
3, and r(x) =

r0 + r1x+ r2x
2 + r3x

3. Note that

〈p, αq + βr〉 = p0(αq0 + βr0) + p1(αq1 + βr1) + p2(αq2 + βr2) + p3(αq3 + βr3)

= α(p0q0 + p1q1 + p2q2 + p3q3) + β(p0r0 + p1r1 + p2r2 + p3r3)

= α〈p, q〉+ β〈p, r〉

for all α, β ∈ R. Consequently, the third condition is satisfied.
Therefore, 〈·, ·〉 is an inner product on P4.

(1c-i):

To apply the Gram-Schmidt process, we first note that

〈1, 1〉 = 1 · 1 + 0 · 0 + 0 · 0 + 0 · 0 = 1

〈1, x〉 = 1 · 0 + 0 · 1 + 0 · 0 + 0 · 0 = 0

〈1, x2〉 = 1 · 0 + 0 · 0 + 0 · 1 + 0 · 0 = 0

〈x, x〉 = 0 · 0 + 1 · 1 + 0 · 0 + 0 · 0 = 1

〈x, x2〉 = 0 · 0 + 1 · 0 + 0 · 1 + 0 · 0 = 0

〈x2, x2〉 = 0 · 0 + 0 · 0 + 0 · 0 + 1 · 1 = 1.

By applying the Gram-Schmidt process, we obtain:

u1 =
1

‖1‖
u1 = 1

u2 =
1 + x− p1
‖1 + x− p1‖

p1 = 〈1 + x, 1〉 · 1

= 1

1 + x− p1 = x

‖1 + x− p1‖2 = 〈x, x〉 = 1

‖1 + x− p1‖ = 1

u2 = x



u3 =
(1 + x)2 − p2
‖(1 + x)2 − p2‖

p2 = 〈(1 + x)2, 1〉 · 1 + 〈(1 + x)2, x〉 · x

= 1 + 2x

(1 + x)2 − p2 = x2

‖(1 + x)2 − p2‖2 = 〈x2, x2〉 = 1

‖(1 + x)2 − p2‖ = 1

u3 = x2.

(1c-ii):

The vector p in S that is closest to the vector (1 + x)3 can be found by projection as follows:

p = 〈(1 + x)3, 1〉 · 1 + 〈(1 + x)3, x〉 · x+ 〈(1 + x)3, x2〉 · x2.

Note that
〈x3, 1〉 = 〈x3, x〉 = 〈x3, x2〉 = 0.

Therefore, we have
p = 1 + 3x+ 3x2.

 Eigenvalues and diagonalization 4 + 4 + (2 + 8) = 18 pts

(a) Let M ∈ Cm×m be of the form M = A+iB where A, B ∈ Rm×m. Show that M is Hermitian
if and only if A = AT and B = −BT .

(b) Let M ∈ Rm×m be a matrix with M = αMT for some real number α. Show that M is
unitarily diagonalizable.

(c) Consider the matrix

M =

 3 −2 2
−2 0 −1

2 −1 0

 .
(i) Show that the eigenvalues are −1, −1 and 5.

(ii) Find an orthogonal matrix U that diagonalizes M .

Required Knowledge: eigenvalues, eigenvectors, Hermitian matrices, orthogonal
matrices, diagonalization by orthogonal matrices.

Solution:

(2a):

The matrix M is Hermitian if M = MH where MH denotes the conjugate transpose. Then,
we have

M = MH ⇐⇒ A+ iB = (A+ iB)H

⇐⇒ A+ iB = AT − iBT

⇐⇒ A = AT and B = −BT .



(2b):

A matrix is unitarily diagonalizable if and only if it is normal. Note that

MMH = MMT = α(MT )2 and MHM = MTM = α(MT )2.

Therefore, M is normal and hence unitarily diagonalizable.

(2c-i):

The characteristic polynomial of M is given by

pM (λ) = det(M − λI) = det
(3− λ −2 2
−2 −λ −1
2 −1 −λ

)
= λ2(3− λ) + 4 + 4 + 4λ− (3− λ) + 4λ

= −λ3 + 3λ2 + 9λ+ 5.

Note that pM (5) = −125+3 ·25+9 ·5+5 = −125+75+45+5 = 0. Therefore, 5 is an eigenvalue.
Note also that

pM (λ)

5− λ
= λ2 + 2λ+ 1.

Then, we can conclude that the two other eigenvalues are −1 and −1.

(2c-ii):

For the eigenvalue 5, we can find an eigenvector by solving the following linear equation:

0 = (M − 5I)x =

−2 −2 2
−2 −5 −1

2 −1 −5

x1x2
x3

 .
This results in

x =
1√
6

 2
−1
1

 .
For the eigenvalue −1, we need to find two orthonormal eigenvectors. To do so, we solve the
following linear equations:

0 = (M + I)x =

 4 −2 2
−2 1 −1

2 −1 1

x1x2
x3

 .
This results in x2 = 2x1 + x3 and leads to, for instance, the eigenvectors:

y =

0
1
1

 and z =

1
2
0

 .



To orthonormalize these two vectors, we can use the Gram-Schmidt process:

u1 =
y

‖y‖
‖y‖2 =

0
1
1

T 0
1
1

 = 2

‖y‖ =
√

2

u1 =
1√
2

0
1
1


u2 =

z − p1
‖z − p1‖

p1 = 〈z, u1〉 · u1

=
1

2

(1
2
0

T 0
1
1

)0
1
1

 =

0
1
1


z − p1 =

1
2
0

−
0

1
1

 =

 1
1
−1


‖z − p1‖2 =

 1
1
−1

T  1
1
−1

 = 3

‖z − p1‖ =
1√
3

u2 =
1√
3

 1
1
−1

 .
Therefore, we have

 3 −2 2
−2 0 −1

2 −1 0

 =

 2/
√

6 0 1/
√

3

−1/
√

6 1/
√

2 1/
√

3

1/
√

6 1/
√

2 −1/
√

3

5 0 0
0 −1 0
0 0 −1

 2/
√

6 0 1/
√

3

−1/
√

6 1/
√

2 1/
√

3

1/
√

6 1/
√

2 −1/
√

3

−1



 Positive definiteness 6 + 12 = 18 pts

(a) Let M ∈ Rm×m be a symmetric matrix. Show that M2 is positive definite if and only if M
is nonsingular.

(b) Check if the matrix

M =

1 1 1
1 2 2
1 2 3


is positive definite or not.

Required Knowledge: positive/definite matrices, leading principal minor test for
positive definiteness.

Solution:

(3a):

Note that M2 = MTM since M is symmetric. Then, we have

M2 is positive definite ⇐⇒ xTM2x > 0 for all nonzero x ∈ Rm

⇐⇒ xTMTMx > 0 for all nonzero x ∈ Rm

⇐⇒ ‖Mx‖2 > 0 for all nonzero x ∈ Rm

⇐⇒ Mx 6= 0 for all nonzero x ∈ Rm

⇐⇒ M is nonsingular

(3b):

A symmetric matrix M is positive definite if and only if all its leading principal minors are
positive. Note that the leading principal minors can be computed as follows:

det(1) = 1

det
( [1 1

1 2

] )
= 2− 1 = 1

det
(1 1 1

1 2 2
1 2 3

) = 1 · 2 · 3 + 1 · 2 · 1 + 1 · 1 · 2− 1 · 2 · 1− 1 · 2 · 2− 1 · 1 · 3

= 6 + 2 + 2− 2− 4− 3 = 1.

Since all leading principal minors are positive, the matrix is positive definite.



 Singular value decomposition 13 + 5 = 18 pts

Consider the matrix

M =

a −b 0
b a −b
0 b a


where a and b are positive real numbers.

(a) Find a singular value decomposition of M .

(b) Find the best rank 2 approximation of M .

Required Knowledge: singular value decomposition, lower rank approximations.

Solution:

(4a):

Note that

MTM =

a2 + b2 0 −b2
0 a2 + 2b2 0
−b2 0 a2 + b2

 .
Then, the characteristic polynomial of MTM can be found as

pMTM (λ) = det
(a2 + b2 − λ 0 −b2

0 a2 + 2b2 − λ 0
−b2 0 a2 + b2 − λ

)
= (a2 + 2b2 − λ)[(a2 + b2 − λ)2 − b4]

by expanding the determinant with respect to the second row (or column). Note that

pMTM (λ) = (a2 + 2b2 − λ)[(a2 + b2 − λ)2 − b4]

= (a2 + 2b2 − λ)(a2 + b2 − λ+ b2)(a2 + b2 − λ− b2).

Since b is not zero, we get
λ1 = λ2 = a2 + 2b2 > λ3 = a2.

Since a is a positive real number, this results in the following singular values:

σ1 = σ2 =
√
a2 + 2b2 > σ3 = a.

Next, we need to diagonalize MTM in order to obtain the orthogonal matrix V . To do so, we
first compute eigenvectors of MTM .

For the eigenvalue a2 + 2b2, we have

0 =
(
MTM − (a2 + 2b2)I

)
x =

−b2 0 −b2
0 0 0
−b2 0 −b2

x1x2
x3

 .
This results in, for instance, the following orthonormal eigenvectors

v1 =
1√
2

 1
0
−1

 and v2 =

0
1
0





since b is not zero.
For the eigenvalue a2, we have

0 =
(
MTM − a2I

)
v =

 b2 0 −b2
0 2b2 0
−b2 0 b2

v1v2
v3

 .
This yields the following eigenvector

v3 =
1√
2

1
0
1


since b is not zero. Hence, we get

V =

 1/
√

2 0 1/
√

2
0 1 0

−1/
√

2 0 1/
√

2

 .
Note that the rank of M is equal to the number of nonzero singular values. Thus, r = rank(M) = 3.
By using the formula

ui =
1

σi
Mvi

for i = 1, 2, 3, we obtain

u1 =
1√

2(a2 + 2b2)

a −b 0
b a −b
0 b a

 1
0
−1

 =
1√

2(a2 + 2b2)

 a
2b
−a


u2 =

1√
a2 + 2b2

a −b 0
b a −b
0 b a

0
1
0

 =
1√

a2 + 2b2

−ba
b


u3 =

1√
2a

a −b 0
b a −b
0 b a

1
0
1

 =
1√
2

1
0
1

 .
Consequently, one singular value decomposition can be given by:

a −b 0
b a −b
0 b a

 =


a√

2(a2+2b2)

−b√
a2+2b2

1√
2

2b√
2(a2+2b2)

a√
a2+2b2

0

−a√
2(a2+2b2)

b√
a2+2b2

1√
2


√a2 + 2b2 0 0

0
√
a2 + 2b2 0

0 0 a

 1√
2

0 1√
2

0 1 0
−1√
2

0 1√
2

 .
(4b):

The best rank 2 approximation can be obtained as follows:

M̃ =


a√

2(a2+2b2)

−b√
a2+2b2

1√
2

2b√
2(a2+2b2)

a√
a2+2b2

0

−a√
2(a2+2b2)

b√
a2+2b2

1√
2


√a2 + 2b2 0 0

0
√
a2 + 2b2 0

0 0 0




1√
2

0 1√
2

0 1 0

−1√
2

0 1√
2



=


a√
2
−b 0

2b√
2

a 0

−a√
2

b 0




1√
2

0 1√
2

0 1 0

−1√
2

0 1√
2

 =


a
2 −b a

2

b a b

−a
2 b −a

2

 .



 Cayley-Hamilton theorem and Jordan canonical form 6 + 12 = 18 pts

Consider the matrix

M =

1 a b
0 1 a
0 0 1


where a and b are real numbers with a 6= 0.

(a) By using Cayley-Hamilton theorem, show that (M2 − I)999 = 0.

(b) Put the matrix M into Jordan canonical form.

Required Knowledge: Cayley-Hamilton theorem, Jordan canonical form.

Solution:

(5a):

The characteristic polynomial of M can be found as:

pM (λ) = det(M − λI) = det
(1− λ a b

0 1− λ a
0 0 1− λ

) = (1− λ)3.

Note that M2 − I = (M − I)(M + I) = (M + I)(M − I). Thus, we get (M2 − I)999 =
(M − I)999(M + I)999. It follows from Cayley-Hamilton theorem that (M − I)3 = 0. There-
fore, we get (M2 − I)999 = 0.

(5b):

Since pM (λ) = (1 − λ)3, there is only one eigenvalue λ = 1 with multiplicity 3. To find the
linearly independent eigenvectors, we need to solve the following linear equation:

0 = (M − I)x =

0 a b
0 0 a
0 0 0

x1x2
x3

 .
Since a is not zero, this yields only one linearly independent eigenvector:

x =

1
0
0

 .
This means that the Jordan form should be

[
1 1 0
0 1 1
0 0 1

]
. Note that

(M − I)2 =

0 0 a2

0 0 0
0 0 0

 and (M − I)3 = 0.

Then, we need to solve (M − I)2v = x, that is0 0 a2

0 0 0
0 0 0

x1x2
x3

 =

1
0
0

 .



Since a is not zero, one solution can be found as:

v =

 0
0
1
a2

 .
Note that

(M − I)v =

0 a b
0 0 a
0 0 0

 0
0
1
a2

 =


b
a2

1
a

0

 and (M − I)2v =

0 0 a2

0 0 0
0 0 0

 0
0
1
a2

 =

1
0
0

 .
Therefore, the Jordan canonical form can be given as:1 a b

0 1 a
0 0 1

 =

1 b
a2 0

0 1
a 0

0 0 1
a2


1 1 0

0 1 1
0 0 1


1 b

a2 0

0 1
a 0

0 0 1
a2


−1

.


